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Part I 

Cylindrical Shell 

Wolfram Stadlerl 
James T. S. Wang* 

Summary 

The bending theory of thin shells is used to obtain the dynamic response 
of a complete cylindrical shell of finite length. The shell is subjected to 
axisymmetric dynamic loads, normal to the shell surface. The effects of the 
inertial load in the longitudinal direction are assumed to be negligible. The 
general solution is exact within the theory, and it is presented in a concise 
form, which simplifies its application to specific boundary-value problems. 
The natural frequencies are calculated from transcendental equations obtained 
by the application of the respective boundary conditions to the general solu- 
tion. An illustrative example of a clamped cylindrical shell subjected to a 
uniform shock with linear decay is presented, including numerical results. 

Symbols 

d Duration of loading 
D Plate rigidity 
E Modulus of Elasticity 
h Shell thickness 
L Shell length 
4 Normal load 
R Radius of cylinder 
t Time 
W Normal displacement 
XYY Longitudinal and tangential boordinates 

1 Graduate Research Assistant, School of Engineering Mechanics. 

*Associate Professor of Engineering Mechanics. Georgia Institute of Technology. 
Atlanta, Georgia 30332. 
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Introduction 

The analogy between the governing equation of a beam on an elastic founda- 
tion, and the dynamic response of a cylindrical shell, with axisymmetric 
loading and negligible longitudinal inertiais obvious. Full use was made of 
this fact in obtaining the present solution. 

The case of simply-supported cylindrical shells subjected to dynamic 
loads has been considered by several authors, for example by P. G. Bhuta [l], 
who used the same differential equation employed here. F. I. Baratta [2], made 
extensive use of the solutions obtained for the motion of a beam on an elastic 
foundation subject to various boundary conditions and loaded by constant ve- 
locity shock-waves. He solved individually for each type of loading and pre- 
sented the respective solutions in tabular form. C. N. DeSilva and 
G. E. Tersteeg [3] obtained expressions for the lowest frequency of vibration 
for various types of shells of revolution, based on membrane theory, with the 
inclusion of bending effects at the boundary. Their expression for the natural 
frequencies of a clamped circular cylinder agrees with the one presented in 
this paper to within a small factor. Little work has been done considering 
boundary conditions other than simply supported edges. 

There was a definite need to consolidate some of this work and to genera- 
lize the solution subject to the assumptions indicated above. The presented 
general solution is exact within the theory and is applicable to any problem 
involving finite cylindrical shells with axisymmetric normal, dynamic loads, 
and arbitrary geometric boundary conditions. 

The governing differential equations are based on the bending theory of 
thin shells. The effects of longitudinal inertia are neglected and axisym- 
metric loading is assumed. With these assumptions it is possible to reduce 
the system of two equations to a single, linear, fourth-order partial differen- 
tial equation, analogous to that of a beam on an elastic foundation. First, 
the homogeneous equation is solved for the general eigenfunctions of free 
vibration, in a form, which may easily be modified to suit the particular 
boundary conditions. The dynamic response is then obtained by expanding both, 
the loading function and the response in terms of the general, normalized 
eigenfunctions. The final, general solution also appears in a form, which is 
easy to apply to a particular problem. 

To illustrate the use of the general solution, the problem of a clamped, 
cylindrical shell, subjected to a uniform shock, with a decay-function, 
varying linearly with time, is solved, including numerical results. 
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Equation of Motion 

In Fig. 1 the general terminology used in this paper is illustrated. The 
differential equation of motion 

(1) 

is based on the bending theory of thin shells with the additional assumptions 
of negligible inertial loading in the x-direction, and subjection only to 
dynamic loading, which is axisymmetric, and normal to the surface of the shell. 
In equation (l), w denotes the radial deflection, x the longitudinal variable, 
E Young's modulus, h the thickness of the shell, othe mass per unit volume, 
t the time variable, R the radius measured to the middle surface, and D is the 
rigidity of the shell. q represents the loading as a function of x and t. 

Equation (1) is non-dimensionalizedby introducing the following non- 
dimensional variables: 

w=w; s=x. T=i; 
L L' Q=$ 

where d represents some characteristic time interval, like the duration time 
of the shock-load, for example. The result of this non-dimensionalization is 

a% 
- - 

m + alW + a2 a'# 
-K2 = a39 , (2) 

where 
EhL4 

a1 
PhL4 EL3 

= 5 ; a2 - Dd2 ; a3 = -jj- . 

In order to solve equation (2) the eigenfunctions corresponding to the free 
vibration are obtained first by assuming 

%S,-r) = W(c)eiwT 

Substitution in 

a4G + alG + a2 a% = 0 
aS4 52 

results in 

d4W 
d54 

- x4w = 0 , (3) 

where A4 = a2w2 - al. The solution to equation (3) is well known. However, 
instead of writing this solution in the usual form, it will here bepresented 
as it was first obtained by W. Nowacki [4] by employing Laplace transforms. 

I-- _ - 



FIGURE 1. 

SCHEMATIC REPRESENTATION OF CYLINDRICAL SHELL 



In this form the solution is 

W(E) = W(O)T( XC.1 + $ W' (O)S(XE) + -$ W"(O)N(Ac) +-$ W"' (O)MOS), (4) 

where the primes denote the derivatives with respect to 5, and where 

MOE) = l/2 (sinh Xc - sin Xc) 
No1E) = l/2 (cash Xg - cos he) 
S(E) = l/2 (sinh AC + sin Xc) 
TOS) = l/2 (cash Xc + cos Xc) (5) 

with M(0) = N(0) = S(0) = 0 and T(0) = 1. The advantage of writing the 
solution in this form lies in the fact that the boundary conditions appear 
explicitly and hence simplify the application of the general solution to a 
specific eigenvalue problem. The frequency equations are obtained in the usual 
manner by substituting the boundary conditions into equation (4), as illus- 
trated in the included example. The resulting eigenvalues An are then sub- 
stituted into (4) to obtain the eigenfunctions W,(c). The arbitrary constant 
contained in the eigenfunctions is used to normalize the W,(c) to facilitate 
further calculations. 

cular 
It might be noted at this point that the eigenvalues An in this parti- 

case form a denumerable sequence of positive values due to the positive 
definiteness of the operator L = d'+ -- 
complete, orthonormal system, de4 

The eigenfunctions Wn(s) constitute a 

and any function f, which satisfies the boundary conditions, and for which L[f] 
is piecewise continuous may be expanded in terms of these eigenfunctions in 
an absolutely and uniformly convergent series [S]. 

It may now be assumed that the forcing function Q satisfies these con- 
ditions. If the forcing function does not satisfy the boundary conditions, 
only the values of the response near the boundary are affected; convergence 
is still uniform and absolute on any closed subinterval strictly interior to 
the basic interval, as long as the remaining hypotheses are satisfied. 

With these facts in mind, it is then possible to write 

Q(GT) = F qn(T)WnCfi) 
n=l 

w (C,T)’ iY 
n=l 

YnWWn(~) , 

where c(c,r) now is the actual response, and where, in the usual manner 

9j (~1 = /'Q(E>T)Wj (E)d< 
0 

is a known quantity. Equations (6) are then substituted in 

5 
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Multiplication of the result by Wj(<) and integration w.r.t.c over the basic 
interval [O,l], results in 

(7) 

where w j (As4 + al). In obtaining (7), use was made of the facts that 
2 J 

integral and summation are interchangeable due to the uniform convergence of 
(6), and the orthonormality of the W,(S), i.e., 

; Wi(s)wj (S)dS = 6ij , 
0 

where 6. j is the Kronecker delta. For a system initially at rest in the 
equilib&um position the application of Laplace transforms to equation (7) 
results in 

'j CT) = & a qj(5) sin uj(r -z;) dc 

and hence, the dynamic response of a cylindrical shell subject to an axisym- 
metric, normal dynamic loading Q, where L[Q] is piecewise continuous, is 
given by 

Ed2 m 
i(s,T) = phL c F i qi(5) sin ui(r - S)d<. (8) 

i=l 1 0 

Here, the Wi(<) are the orthonormal eigenfunctions corresponding to a parti- 
cular boundary value problem. 

Illustrative Example 

Clamped cylinder subjected to a uniform shock subsiding linearly with 
time. 

a) The dynamic response. 
Consider a cylindrical shell clamped at both ends and loaded axi- 

symmetrically by a uniform shock decaying linearly w.r.t. time. The nondimen- 
sionalized geometric boundary conditions to be used in equation (4), and its 
derivative w.r.t.E, are: 

W(O) = W(1) = W’(0) = W’(1) = 0 , (9) 

with the system at rest initially. The resulting eigenfunctions for this par- 
ticular boundary value problem become 

W(XnS) - No M(x,S)I 
MC&) 

, (10) 
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where the Cn are written as 
1 

1 
2 -l/2 

%I= M(QS, d&t 

in order to normalize the Wn. The eigenvalues X, are obtained from the 
transcendental equation 

coshX n cos X, = 1 , (11) 

resulting in the non-dimensional eigenfrequencies of free vibration of the 
cylinder, 

4 + EhL4 
- 1. DR2 (12) 

The numerical values for the X, are given by 

A1 = 4.730; x2 = 7.853; X3 = 10.996; 

A4 = 14.137;h5 = 17.279;A, = x/2(2n + 1) for n> 5. 

It is obvious that X = 0 also is a solution of (11) but the eigenfunction 
corresponding to X = 0 is W :O, and hence is of no interest. It must be 
noted that expression (12) %grees with that obtained in [3] to within a 
factor of l/(1- v2) multiplying the second term. 

The loading q is taken to be internal and of the form 

q(x,t) = -po(l - r_> , 
d 

(13) 

where p is the peak overpressure, and d is the equivalent decay time, 
valent ?n the sense that the magnitude of the impulse due to the linear 

equi- 

decay is the same as that due to the actual decay. The non-dimensional form 
of (13) is 

Q(E,T) = -3 1 -r). 
E( 

It is clear that the final solution of the problem must consist of two 
parts, one, the response during the duration of the shock, two, the subsequent 
free vibration of the shell with corresponding initial conditions. The con- 
cern here shall be the former only. 

As indicated in equation (6), the loading Q is expressed in terms of the 
W,(s) with 

1 
qj (T) = / Q(S,T) Wj (S)dS = 

0 

- 2 K(Aj)(l-r) 9 



where 

zi N(Xj) 
K(Xj) ~ X. '('j) - M(X ) [T(Xj) - 11 . 

J j 

The integral 

then is 

PO 1 
- Ew K(Xj) - T- COS “j’ + ;.Sin UjT . 

j J 1 (14) 

The substitution of expression (14) into equation (8) results in the non- 
dimensional dynamic response 

d2po OD K(Q) Wi(S) 
ih,-r) = - PhL ' 

1 

W’ 2 

j=l 

-T - COS UjT+ z. sin wj’ . 1 (15) 
J J 

This solution reduces to the static solution corresponding to a uniform load 
of unit magnitude, when the expression in brackets is omitted. 

b) The numerical results 

In the numerical evaluation of equation (15) the shell is assumed 
to be of steel, with the following materialplrameters and dimensions: 

L = 10.0 in; 
h = 0.05 in; 

R = 5.0 in ; E = 30 x lo6 psi; 
d = 20 m set; v = 0.3 ; 

p = 0.0007298 lb sec2/in4. 

For convenience in the calculations the peak overpressure of the loading is 
taken to be unity. 

The series are evaluated, approximately, at 5 = l/2 for the presumed 
maximum deflection. Convergence is excellent, with an accuracy to three sig- 
nificant figures obtained by taking only the first five terms of the series. 

Table I lists the non-dimensional natural frequencies. Since there is 
very little spread in the natural frequencies of these lower modes, it is 
feasible to speak of a "quasi-period" of the motion. If the "mean" frequency 

Table I 
Non-dimensional Natural Frequencies 

n=l 811.11 
n=2 811.87 
n=3 814.38 
n=4 820.21 
n=5 831.42 
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is taken to be 812.5, the non-dimensional "quasi-period" becomes approximately 
0.0077, or 0.154 m set, which is born out also by the representation of the 
exact non-dimensional response inFig. 2. A schematic representation of the 
response throughout the duration of the load may be found inFig. 3, where, 
as indicated, the maximum dynamic deflection occurs at T = .74 and is about 
2.4 times the static deflection due to a uniform load of unit magnitude. 

To check the accuracy of the solution the length L is varied, and, as is 
to be expected, this variation has little effect on the magnitude of the de- 
flection, when L is kept in the long shell range. No other parameters or 
dimensions were varied. 
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Conclusion 

The dynamic response of a cylindrical shell, subjected to axisymmetric 
loads is obtained. The solution is exact within the assumptions of the theory, 
and it is presented in an easily applied form. The numerical results are in 
accord with those obtained in [ll, in that the dynamic loading factor as de- 
fined therein, is about 2.4 for the illustrative example considered. The 
solution presented here unifies and supplements previous work done by other 
authors almost exclusively on simply supported cylindrical shells. 
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Part II 

Hemispherical Shell 

BY 

James Ting-Shun Wang1 
Chi-wen Lin2 

Summary 

The ax&symmetric dynamic response of hemispherical shells subjected to 
arbitrary loading is formulated according to elastic bending theory of shells. 
Generalized Green's functions are constructed and closed form solutions are 
obtained for hemispherical shells having roller hinged and roller-clamped 
edges. The results can be reduced to the solutions obtained by other authors 
according to membrane shell theory. Comparison is made on the frequencies 
obtained according to the present bending theory to the frequencies based on 
membrane theory. When harmonic loadings are applied along the edge of roller- 
hinged and along the edge of roller-clamped shells, the frequency equations 
for a shell with hinged edge and a shell completely clamped along its edge 
are obtained. The lowest three frequencies for a fixed edge hemispherical 
shell are calculated for three different thickness-radius rations. 

1Associate Professor of Engineering Mechanics 
2 Graduate Research Assistant of Engineering Mechanics 
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G, G* 

h 

Ml$' Me 

N$l' Ne 

qv, qw 

Q 

S 

t 

VY w 

a 

x 
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Symbols 

Radius of the hemispherical shell 

Modulus of elasticity 

Generalized Green's functions 

Shell thickness 

Components of stress couple 

Components of stress resultant 

Tangential and normal components of surface loading 

Transverse shear along meridianal line 

Laplacian parameter 

Time 

Components of displacements 

h ($' 

pa20 - p2>/E 

Spherical coordinates 

Components of strain 

Components of change of curvature 

Poisson's ratio 

Density 

Frequency 
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Introduction 

The,free vibration of hemispherical shells has been studied recently by 
a number of authors. Naghdi and Kalnins Cl] obtained the natural frequencies 
for free-edged shells with thickness-radius ratio larger than 0.01. The 
frequency equations corresponding to spherical shells and for hemispherical 
shells are discussed by Kalnins in [2]. Huang r-31 obtained the natural 
frequencies for a hemispherical shell using a method, similar to that used by 
Baker [S] to obtain the frequencies for a complete spherical shell, neglecting 
bending effects. In [5] Kalnins presents a numerical method for the calcu- 
lation of the natural frequencies and normal modes of arbitrary rotationally 
symmetric shells. 

The present study is concerned with the following aspects: 

(A) The general solution of the dynamic response of roller-hinged and 
roller-clamped hemispherical shells subjected to arbitrary loads. 

(B) The free vibration of hemispherical shells with roller-hinged and 
roller-clamped edges. 

cc> The free vibration of hemispherical shells with hinged and com- 
pletely clamped edge by using the results obtained in (A) and (B). 

The solutions are obtained in closed form, based on the bending theory 
of shells. 

17 



Basic Elasto-Kinetic Equations 

The equations of motion for the sxisymmetric deformation of a spherical 
shell are 

aN a2v 
w + (N$ - Ne) Cot (I - Q = cham - q, a 

a 
s +QCot$ +NB+N+=phaat2 -q,a 

c 
(la) 

(lb) 

$f++ O-Q, - Me> Cot $ - Q a = 0 (lc) 

Figure (1) shows the geometry of a hemispherical shell. The stress- 
strain-displacement relations are 

N,+ = $$Y cE 9 + pEe) = ac~hp2j &-w) + p(v cot+- w) 1 (24 
Ne =iqp Eh (E@ + UEe) = acEp2) (v cot @ - w) + u a ($ - w) (I= 1 (2b) 

--I D av aw 
M+= -D(X+ + PXB) = -,2 g+ z?E + u(v + F$QCot$ 34,~ 1 
Me = -D(xe + q, ) = 3 1 

(2c) 

(2d) 

By eliminating Q in Eqs. (la) - (lc) and substituting the stress- 
displacement relations in Eq. (1) results in the following governing differ- 
ential equations: 

$ a L (w) + (1 + a)L(Y) - [ (1 + u) (1 + a) (w + Y) + 

2aw + 2(1 +a)Y - A$$ 1 = -qv * 

ah (W + Yu> - (1 + p)L(w)] - C(1 + 11) (1 + a)] L(Y) + 

a2w 
2(1 + lJ) w -1-x 2 = -qw w 

where 

a = 1 (h)2, X =p a'(l-p2) ax 
12 a E ,v=v 

and 

(W 

(3b) 

(fd 

a2(9 a(*) L(*) = F + Cot47 (4b) 
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Q 

Fig. (1) Geometry of a Hemispherical Shell 
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With the usual assumption of (i)' << 1 for thin shells, Eqs. (3a) and 
(3b) can be simplified by neglecting a when compared to 1. Eqs. (3a) and 
(3b) thence have the form 

L(Y) = -a L(w) + (1 +U) w-(1-u)Y -l-A.* - a2(1 -u 2> 4 
at2 Eh 

lo qv d4 (5a) 

LL(w) = - LL(Y) +(l+j.l)L (w) + l.p L(Y) w w - x 5 -qw+$) (5b) 

Let x = Cos $, the operator L becomes (6) 

L(.) = (1 - x2) qg - 2x A&l 
X 

(7) 

Shells, subject to the following boundary conditions, will be considered 
first: 

(a) Roller-hinged edge: 
av & 

w = s = a42 = 0 along + = v/2 (8a) 
aw a% a3b7 

(b) Roller-clamped edge: v + s = q + w = 0 along+ = a/2 (8b) 



Construction of the Generalized Green's Functions 

The generalized Green's Functions associated with the linear operator L 
and LL shall be denoted by G (x,6) and G* (x, 5) respectively. They satisfy 
the equations 

L(G) = 6 (x - 5) (gal 

LL(G*) = 6 (x -5) (-1 
a 

and the conditions for 

(a> Roller-hinged edge: 

(b) Roller-clamped edge: 

aG aG* 
ag=ag 

a3G* o =- = 
x3 

ate= 0 

at5= 0 

(loa) 

(lob) 

where 6(x-$ is the singularity function. 

The general solution of Legendre's equation 

(1 - E2) $ - 25 e+ n(n + 1) G = 0 

has the form 

G = ; AnPn(c) + 
n=O 

i BnQn(S) 
n=O 

(12) 

where P,(c) and Qn(c) are the Legendre polynomials of the 1st and the 2nd kind 
respectively. 

Since G(x, 5) must be finite for 5 = 1, hence 

and Eq. (12) becomes 

G = nEO AnPn(C) I (14) 

Substitution of Eq. (14) into Eq. (9a) in conjunction with (11) leads to 
03 

- c 
n=O n(n + 1) A,P,(O = 6 (x -5) 

where 

An=-n(n+l) ln Z&L IoF (5) 6(x -5) dc = s)pn(x) 

(15) 

(16) 

21 
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Therefore 

G(x, 5) = : a p,(X) p&> 
n=~ n(n+l) 

(17) 

In a similar manner, the generalized Green's function associated with 
the operator LL is found to be 

m 2n+l 
G*(x, 6) = -nzo n2(n+1)2 Pn(X) Pn(E) (18) 

The multiplication of Eqs. (5a) and (5b) by G(x, 5) and G*(x, 6) res- 
pectively, and their integration over the interval CO, l] in conjunction with 
Eqs. (10a) and (lob) results in 

'I' = -1; L(S) G(x,S) dS (19) 

w = -,; LL(w) G*(w, <) dS (20) 

in which 

G(x, 5) = y 
2n+l -- P,(X) P,(c) 
n(n+l) 

n=1,3,5--- 
or 

n=2,4,6--- 
co 

G*(x, ) = Xi 2n+l Pn(X> Pn(S) 
n=1,3,5--- n2(n+ly 

n=yf4,6--- 

(214 

(21b) 

where n=1,3,5,--- corresponds to the roller-hinged case, and n=2,4,6--- 
corresponds to the rollericlamped case. 

Using Eqs. (5) and (21) in the Eq. (20) it is found that '4 and w are 
in the following general form: 

co 
Y(x, t) = c 

n=1,3,5-- 
'n(t) Pn(X) (22a) 

or 
n=2,4,6-- 

w(x, t) = ; Wn(t> Pn(X) 
n=1,3,5--- 

or 
n=2,4,6 

(22b) 

where Y (t) and w (t) satisfy the following differential equations: 

a2y 
x --$ - c<l-u) - n(n+l)]Yn + [un(n+l) + (l+p)]w, 

(23a) 

22 



and 

"Zr, 
1 7 + {2(1 + u) + an(n+l) [n<n + 1) + (1 + u)] wn 

+ n(n +l) [(l + p) + an(n + l)]Yn (2%) 

= -(2n + 1) a2(lE; p2) ,t q P (E)dg 

By eliminating wn and Y, between Eqs. (23a) and (23b), two uncoupled 
linear differential equations are obtained. 

x2 
a4y 
n+ Aln 

a2y 

at4 
A+ Apn Yn 

at2 

w (2n + 1) 
a21 1 +(O 

= A3n +A -II-J Pn(& qv d+dc 

+ [ .n(n + 1) + (l+~)].fi q, P,(c) dJ Wa) 

x2 
a4 a2 
d+A 
at4 

2 + A2nwn 
lnat2 

=- w (2n + 1) { b(n + 1) - (1 - 11) + j$]. 

Ji qw P,(S) dS + n( n + 1) [Cl + l-11 + an(n + l)lJ$'n(~)jO qv d#dC 
4($ I- 

(24b) 

where 

Aln= c an(n + 1) (n2 + n + 1 + v) I[ + n(n + 1) + (1 + 3u) 1 (25a) 

A2n'{a Cn(n + 1) - (1 - u>]Cn(n + l>(n2 + n + 1 + lJ> 1 

- c2n3(n + 1 3- 2an2(n + 02(1 + !J>I 

+(1- 2 

A 3n = [ an(I Il:yiFr 1 ,1)+-12j pj + [2(1 + pj 

(25b) 

(25~) 

The general solutions of Eqs. (24a) and (24b) may be obtained by use of 

Laplace transforms, 
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they are 

Y 
n = Bin Cos Wlnt + B2, Cos W2nt + Cln Sin Wlnt + C2n Sin W2nt + 

+ a2(14) 2ni-1 

A2Eh (W~n-W&> 

{ cA3n-Xwfn(wfn- LJ Jt Lsin wln(t _ =). 

w2n 

1,' pn(c) Jt(')qv d@dcI dT - ln o + Jt [Sin Wln(t - T). 

l&n(n+l) + (lip)] 
d+dS] d-r + . 

Yn W2n , 
JiC!ln Sin W2n (t - T)l -W2n Sin Win (t -T),i Pn(E;) qw dcdr - 

'Dl(Cos W2ut - Cos mint) + A D2 (& Sin W2nt - &- Sin ulnt) > (26a) 
2n In 

wn = Bin * cos w 
lnt + B2n "Cos W2n t+c 

In 
* Sin w In 

t+c 2n* Sin W2nt 

_ a2(1-,,2) . 2n+l 
[n(n+l)-(l-p)-AU&($n-$&)] 

h2Eh <W$n-w&> W2n 

lp in W2n(t - .I,; P,(S) clw dQ dT - 

P,(S) qw dSdT + 

n(n+l) r( l+v) 
9n W2n 0 

Win sin uzn(t -T) -Wzn Sin Wln(t -T )1. 

'; P&> /r Q~ d$ dS1 G-A Dl* (Cosw2,t - cos wlnt) 

1 
-A D2* (5 Sinw2nt - G& Sin Wlnt) 

where 

Win 
2 1f 

= z- Aln + [Uln2 - 4 Apn?l; 

W2n2 = 1 
yx Aln2- L(Aln2 - 4 A2n)1’jj 

(26b) 

(27a) 

(27b) 

r-present respectively the upper and lower branches of the natural frequencies 
for the free vibration of the shells, Blu, B2n, Cln, C2n, Bin*, B2a*, Cln*, 

'2n* are arbitrary constants which can be determined by the initial 
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conditions, 

D; 1 1 
5 /i Pn(t)Jqw dt t=O 

(28d 

(28b) 

(284 

(28d) 

lw?ri 
h 

and Aw& are ulotted for Ii= 0.01, 0.02, and 0.05 and are shown in 
Figure (2). It is seen-that the variation of thickness has very little effect 
to the upper branch frequencies. However, the lower branch frequencies change 
significantly as the thickness of shell increases, particularly at the higher 
modes. In addition, the lower branch frequencies are not bounded which con- 
tradicts the results obtained according to membrane theory by Baker [41. 
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Free Vibrations of Hinged and Completely Clamped Shell 

If the loading function appearing in equations (26a) and (26b) are 
chosen to be harmonic and assumed to be acting along the edge of the shell, 
the shell can be forced to satisfy the boundary conditions for the hinged and 
the completely clamped edge. 

(a) Hinged boundary: The forcing functions are taken in the following 
form 

4v = 40 6(x - O)eiwt 

qw 

= 0 
(2%) 

where q is the amplitude of the load with frequencyw equal to the natural 
frequengy of the hinged shell. 

Eqs. (29a) and (29b) are substituted in (26a) first and consider only 
the steady state solution. The resulting equation is then substituted into Eq. 
(22a) for the case where n is taken on odd integers. In order that the final 
solution satisfies the following condition 

u=o or J!! = 0 ax 
at x=0 

for hinged shell, the frequency equation is found to be 

m 

s= 1 
n(2n+l) (Ajn- 

-0 (30) 
n=1,3,5--- X2(,2 -I&,) (w2-u22n 

(b) Completely clamped shell: 

The forcing functions are taken as 

qv = 0 (31a) 

imt 
qw = 40 6(x - O>e 

Substitution of Eqs. (31) into Eq. (26b) and then Eq. (22b) for the case 
where n is taken on even integers and satisfies 

for completely clamped shell, the frequency equation is obtained as follows: 

s= f (2n+l) ~~2-n(n+l)+(l-P)l pB(O) o = 
n=2,4,6--- A2(u2-u1n2)(u2- U2$) (33) 
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-1 

The natural frequencies, W, for both hinged and clamped shells may be 
obtained by trial and error procedure on an electronic computer. A value of 
n is first selected. The roots of Equations (30) and (33) are searched between 
every two consecutive Xw? (i = 1 and 2 correspond to upper and lower branches 
respectively). A numberigf trial values of Ati2 with constant increment are 
fed in the Eqs. (30) or (33). The curves S vs Xw2 are plotted. The frequen- 
cies may be obtained by interpolating between the two consecutive Au2 where 
the corresponding values of S change signs. The value of n for the series 
solutions is then increased until the variation of frequencies obtained is 
acceptable. After the approximate values of w are estimated, a more sophis- 
ticated numerical device similar to the method of false positions is programmed 
which may be used to search for more accurate w in the vicinities of the appro- 
ximate ones. 

The first three natural frequencies for a hemispherical shell completely 
clamped along its edge with h = 0.01, 0.02, and 0.05 and n = 60, obtained by 
interpretation, are listed ain Table 1 . A plot of S vs frequencies are shown 
in Figure (3). From the figure, it is seen that w approach to w as the shell 
becomes thinner and increase as the shell thickness increases. 2n For the case 
h - = 0.01, the largest difference between the three lowest frequencies for the 
Feller-clamped and completely clamped cases is 8%. It may be concluded that for 
a sufficiently thin hemispherical shell, the results obtained for roller- 
clamped edge may be used for completely clamped case. 

ii = 0.01 h. -_ -- a a a 

0.51 0.53 0.57 

0.78 0.81 0.98 

I 0.85 I 0.95 I 1.56 I 

Table 1. Xw2 For Completely Clamped Shells 
for p =L 

3 
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Conclusions 

1. The variation of shell thickness has very little effect on the upper 
branch frequencies for hemispherical shells having roller-hinged edge 
and roller-clamped edge. However, lower branch frequencies are affected 
significantly as the shell thickness increases. 

2. The lower branch frequencies for roller-hinged and roller-clamped shells 
are not bounded which contradicts the results obtained according to 
membrane theory given in [4]. 

3. The frequencies of a shell completely clamped along its edge approach 
to the frequencies of a roller-clamped shell when the thickness of the 
shell decreases. It may be concluded that for a sufficiently thin shell, 
the dynamic response for a roller-clamped shell may be used to represent 
a completely clamped case for the regions away from the boundary. 
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